Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer
نویسندگان
چکیده
OBJECTIVES PSMA (prostate-specific membrane antigen) is overexpressed in prostate cancer cells and is reported to be a promising target for antibody-based radioligand therapy in patients with metastasized prostate cancer. Since PSMA expression is not restricted to prostate cancer, the underlying study investigates PSMA expression in non-small cell lung cancer (NSCLC). MATERIAL AND METHODS Immunohistochemistry was used to identify PSMA expression in n = 275 samples of NSCLC tissue specimens. By means of CD34 co-expression, the level of PSMA expression in tumor associated neovasculature was investigated. The impact of PSMA expression on clinicopathologic parameters and prognosis was evaluated. RESULTS PSMA tumor cell expression in NSCLC is as low as 6% and was predominantly found in squamous cell carcinoma (p = 0.002). Neovascular PSMA expression was found in 49% of NSCLC. High neovascular PSMA expression was associated with higher tumor grading (G3/G4) (p < 0.001). Neither for PSMA tumor cell expression, nor for PSMA neovascular cell expression prognostic effects were found for the investigated NSCLC cases. CONCLUSION Here, we report on the expression of PSMA in NSCLC tissue samples. Against the background of a potential treatment with radiolabeled PSMA ligands, our data might serve for the future identification of patients who could benefit from this therapeutic option.
منابع مشابه
Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor
Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...
متن کامل68Ga–Prostate-Specific Membrane Antigen: A Potential Radiopharmaceutical in PET/CT To detect primary Cholangiocarcinoma
68Ga Prostate-specific membrane antigen (PSMA) is an increasingly popular radiopharmaceutical tracer in prostate cancer and is becoming increasingly researched in other cancers such as breast cancer, renal cell carcinoma, glioblastoma multiforme, among others. Cholangiocarcinoma is the second most common primary hepatic malignant tumor; it is an aggressive tumor with a 5-year surviva...
متن کاملExpression of Prostate-Specific Membrane Antigen (PSMA) in Brain Glioma and its Correlation with Tumor Grade
Background & Objective Angiogenesis is an essential component of tumor growth. Expression of PSMA on the neo-vasculature of many solid tumors, including glioblastoma multi-form, has been determined. The pattern of expression suggests that PSMA may play a functional role in angiogenesis. Methods: expression of PSMA in dif...
متن کاملExpression of Prostate-Specific Membrane Antigen in Lung Cancer Cells and Tumor Neovasculature Endothelial Cells and Its Clinical Significance
BACKGROUND Prostate-specific membrane antigen (PSMA) has been found in tumor neovasculature endothelial cells (NECs) of non-prostate cancers and may become the most promising target for anti-tumor therapy. To study the value of PSMA as a potential new target for lung cancer treatment, PSMA expression in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) tissues and its relatio...
متن کاملThe effects of specific expression of apoptin under the control of PSES and PSA promoter on cell death and apoptosis of LNCaP cells
Objective(s): Apoptotic effect of apoptin has been demonstrated in numerous studies. However, its tumor specificity has been questioned by some reports. The aim of this study was to confine the expression of apoptin in the prostate tumor cells by inducing its gene expression under the control of a chimeric enhancer composing of prostate-specific membrane antigen (PSMA) and prostate-specific ant...
متن کامل